首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28445篇
  免费   5153篇
  国内免费   4151篇
化学   21096篇
晶体学   329篇
力学   1638篇
综合类   270篇
数学   3844篇
物理学   10572篇
  2024年   20篇
  2023年   523篇
  2022年   561篇
  2021年   820篇
  2020年   1166篇
  2019年   1107篇
  2018年   980篇
  2017年   888篇
  2016年   1476篇
  2015年   1409篇
  2014年   1670篇
  2013年   2158篇
  2012年   2477篇
  2011年   2661篇
  2010年   1942篇
  2009年   1845篇
  2008年   2114篇
  2007年   1817篇
  2006年   1632篇
  2005年   1411篇
  2004年   1201篇
  2003年   1007篇
  2002年   1215篇
  2001年   966篇
  2000年   734篇
  1999年   608篇
  1998年   463篇
  1997年   399篇
  1996年   426篇
  1995年   379篇
  1994年   311篇
  1993年   245篇
  1992年   211篇
  1991年   203篇
  1990年   143篇
  1989年   114篇
  1988年   75篇
  1987年   72篇
  1986年   83篇
  1985年   60篇
  1984年   40篇
  1983年   37篇
  1982年   18篇
  1981年   19篇
  1980年   7篇
  1979年   10篇
  1978年   6篇
  1975年   3篇
  1974年   4篇
  1957年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
In this paper, we fabricated 1.7 A h soft-packed cells using commercial-grade LiFePO4 and manmade graphite as the active materials for the cathode and anode, respectively. It has been shown that the cycle performances of assembled soft-packed full-cell were still temperature-dependent. An accelerated mechanism of the operating temperature to reformation/repairing of SEI layer have been established, which greatly consumes active lithium during cycling, therefore causes fast capacity loss at elevated temperatures. At same time, cycle property for LiFePO4/graphite cell with different depth of discharge (DOD) levels and ranges. It has been shown that DOD level has very little effect on capacity fade for cell lifecycle; but for DOD range, obvious influence was observed on capacity fade, which is due to the sensitivity of SOC during the storage of the cell.  相似文献   
993.
994.
995.
A stable superhydrophobic polystyrene nanocomposite coating was fabricated by means of a very simple and easy method. The coating was characterized by scanning electron microscopy and X-ray photoelectron spectrum. The wettability of the products was also investigated. By adding the surface-modified SiO2 nanoparticles, the wettability of the coating changed to water-repellent superhydrophobic, not only for pure water, but also for a wide pH range of corrosive liquids. The influence of the drying temperature and SiO2 content on the wettability of the nanocomposite coating was also investigated. It was found that both factors had little or no significant effect on the wetting behavior of the coating surface.  相似文献   
996.
The electrochemiluminescence (ECL) of luminol on indium tin oxide (ITO) glass was high even under a low potential around 0.4-0.5 V, which was quite different from other electrodes such as platinum. ITO nanoparticles were synthesized and used in the research on ITO glass in the ECL process. A static interaction between ITO and luminol is confirmed from UV-vis and fluorescence spectra. Then the ECL enhancement can be supposed to originate from the adsorption of luminol on ITO, which facilitated luminol’s oxidization to the excited state, giving out ECL. On the other hand, ITO can catalyze the generation of reactive oxygen species (ROSs), similar to some other nanomaterials, which also favored the ECL enhancement of luminol.  相似文献   
997.
Pomponlike La2(MoO4)3 microstructures assembled with single-crystalline nanoflakes have been facilely fabricated via a surfactant-assisted ultrasound route for the first time. Various synthesis conditions were examined, such as the surfactant concentration, the molecular structure of surfactants, and the pH value. The obtained pomponlike microstructures were characterized by X-ray diffraction (XRD), (field-emission) scanning electron microscopy [(FE)SEM], transmission electron microscopy (TEM), and nitrogen adsorption/desorption isotherms. It has been revealed that a minimum concentration of sodium dodecylsulfate (SDS) was required for the formation of pomponlike La2(MoO4)3 microstructures. When the SDS concentration is above 0.02 mol L−1, the pomponlike microstructures become more perfect, and the size is also increased with the increasing SDS concentration. Under the same sonication, similar pomponlike microstructures were obtained when a cationic surfactant, cetyltrimethyl ammonium bromide (CTAB), was used instead of the anionic surfactant SDS, indicating that the hydrophobic alkyl chains are an important factor for the formation of the pomponlike La2(MoO4)3 microstructures. It is also found that the pomponlike La2(MoO4)3 microstructures can only be obtained within an optimal pH range of 8.0–9.0 under sonication. Based on TEM, Fourier transform infrared spectroscopy (FT-IR) and solubilization experiment, a formation mechanism of pomponlike La2(MoO4)3 microstructures was proposed, in which the collaborative action of surfactants and sonication plays a key role. Furthermore, the porosity of the pomponlike La2(MoO4)3 microstructures were discussed.  相似文献   
998.
First-principle calculations based on density function theory (DFT) are used to clarify the roles of γ-Fe2O3 in fly ash for removing mercury from coal-fired flue gases. In this study, the structure of key surface of γ-Fe2O3 is modeled and spin-polarized periodic boundary conditions with the partial relaxation of atom positions are employed. Binding energies of Hg on γ-Fe2O3 (0 0 1) perfect and defective surfaces are calculated for different adsorption sites and the potential adsorption sites are predicted. Additionally, electronic structure is examined to better understand the binding mechanism. It is found that mercury is preferably adsorbed on the bridge site of γ-Fe2O3 (0 0 1) perfect surface, with binding energy of −54.3 kJ/mol. The much stronger binding occurs at oxygen vacancy surface with binding energy of −134.6 kJ/mol. The calculations also show that the formation of hybridized orbital between Hg and Fe atom of γ-Fe2O3 (0 0 1) is responsible for the relatively strong interaction of mercury with the solid surface, which suggests that the presently described processes are all noncatalytic in nature. However, this is a reflection more of mercury's amalgamation ability.  相似文献   
999.
The appearance of oscillations for the closed system ClO2–I2–ethyl acetoacetate depends critically on the pH in the absence of sulfuric acid, and was investigated by determining changes in the absorbance of I3 -\mathrm{I}_{3}^{ -} with reaction time at the wavelength 280 nm. The pH should be 2.2–3.8 for this reaction. The initial concentrations of ethyl acetoacetate, chlorine dioxide, iodine and sulfuric acid have great influences on the oscillations observed at wavelengths of 280 nm or 350 nm. The oscillations at 280 nm occur as long as the reactants are mixed. However, at 350 nm the oscillation is preceded by a pre-oscillatory or induction period. The oscillation curve is more regular and smooth at 350 nm than that at 280 nm. The amplitude and the number of oscillations are associated with the initial concentration of each reactant. (1) The higher the initial concentration of ethyl acetoacetate, the greater is the amplitude while the number of oscillations becomes smaller. The amplitude is small at the beginning stage but increases with reaction time. An opposite influence exists for chlorine dioxide. Finally, the oscillation suddenly ceases. (2) When the initial concentration of iodine is higher, the amplitude is small at the beginning stage but then increases with reaction time. When the initial concentration of iodine is lower, the amplitude is large at the beginning stage and then decreases with reaction time. An opposite influence exists for sulfuric acid. Equations for the triiodide ion reaction rate were obtained as functions of reaction time and initial concentrations at the oscillation stage. The intermediates were detected by online FTIR analysis. Based upon the experimental data in this work and in the literature, a plausible reaction mechanism was proposed for the oscillation reaction.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号